metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Dichlorido(N,N'-dibenzylideneethane-1,2-diamine- $\kappa^2 N,N'$)[(2,2-dimethyl-1,3dioxolane-4,5-diyl)bis(diphenylmethanolato)- $\kappa^2 O,O'$]titanium(IV)

Chien-An Chen, Liang-Ying Chiang and Han-Mou Gau*

Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan Correspondence e-mail: hmgau@dragon.nchu.edu.tw

Received 17 October 2007; accepted 24 October 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.036; wR factor = 0.085; data-to-parameter ratio = 16.8.

The title compound, $[\text{TiCl}_2(\text{C}_{31}\text{H}_{28}\text{O}_4)(\text{C}_{16}\text{H}_{16}\text{N}_2)]$, is a titanium(IV) complex of the bidentate 2,2-dimethyl- $\alpha,\alpha,\alpha',\alpha'$ -tetraphenyl-1,3-dioxolane-4,5-dimethanolate (TAD-DOLate) ligand containing also two chloride ions and a bidentate neutral *N,N'*-dibenzylideneethane-1,2-diamine ligand. The molecular structure has a distorted octahedral geometry around the titanium metal center. The Ti–N bond lengths of 2.246 (2) and 2.2476 (17) Å are long, indicating weak bonding between the titanium(IV) metal center and the imine N atoms. Though the two chloride ligands are *trans* to each other, they bend away from the Ti–TADDOLate bonds with a Cl–Ti–Cl angle of 163.96 (3)°.

Related literature

For general background, see: Chen *et al.* (2007); Gau *et al.* (1996); Narasaka *et al.* (1989); Seebach *et al.* (1992); Shao & Gau (1998); Weber & Seebach (1994). For related structures, see: Hintermann & Togni (2000); Gothelf *et al.* (1995); Shao *et al.* (2001); Sheen & Gau (2004).

Experimental

Crystal data

$TiCl_2(C_{31}H_{28}O_4)(C_{16}H_{16}N_2)]$	
$M_r = 819.64$	
Orthorhombic, $P2_12_12_1$	
a = 9.9044 (9) Å	
o = 18.8261 (17) Å	
= 23.238 (2) Å	

Data collection

Bruker SMART 1000 CCD	2
diffractometer	8
Absorption correction: multi-scan	6
(SADABS; Sheldrick, 1996)	I
$T_{\rm min} = 0.672, \ T_{\rm max} = 1.000$	
(expected range = 0.622 - 0.926)	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.036$	
$vR(F^2) = 0.085$	
S = 0.95	
3479 reflections	
505 parameters	
H-atom parameters constrained	

 $V = 4332.9 (7) \text{ Å}^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.37 \text{ mm}^{-1}$ T = 293 (2) K $0.70 \times 0.59 \times 0.21 \text{ mm}$

24512 measured reflections 8479 independent reflections 6464 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.042$

 $\begin{array}{l} \Delta \rho_{\rm max} = 0.25 \mbox{ e } \mbox{ \AA}^{-3} \\ \Delta \rho_{\rm min} = -0.23 \mbox{ e } \mbox{ \AA}^{-3} \\ \mbox{ Absolute structure: Flack (1983),} \\ 3731 \mbox{ Friedel pairs} \\ \mbox{ Flack parameter: } -0.03 \mbox{ (2)} \end{array}$

 Table 1

 Selected geometric parameters (Å, °).

Гi—O4	1.7797 (16)	Ti-N2	2.2476 (17)
Γi−O1	1.7855 (14)	Ti-Cl1	2.3459 (7)
Γi−N1	2.246 (2)	Ti-Cl2	2.3710 (7)
O4 TE O1	08 72 (7)	CI1 Ti CI2	162.06 (2)
N1 - Ti - N2	73.90 (7)		105.90 (5)

Data collection: *SMART* (Siemens 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2000); software used to prepare material for publication: *SHELXTL*.

This work was supported by grants from the National Science Council of Taiwan (grant No. NSC 96-2113-M-005-007-MY3).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2384).

References

Bruker (2000). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

- Chen, C.-A., Wu, K.-H. & Gau, H.-M. (2007). Acta Cryst. E63, m2665-m2666. Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Gau, H.-M., Lee, C.-S., Lin, C.-C., Jiang, M.-K., Ho, Y.-C. & Kuo, C.-N. (1996). J. Am. Chem. Soc. 118, 2936–2941.
- Gothelf, K. V., Hazell, R. G. & Jørgensen, K. A. (1995). J. Am. Chem. Soc. 117, 4435–4436.
- Hintermann, L. & Togni, A. (2000). Angew. Chem. Int. Ed. 39, 4359-4362.
- Narasaka, K., Iwasawa, N., Inoue, M., Yamada, T., Nakashima, M. & Sugimori, J. (1989). J. Am. Chem. Soc. **111**, 5340–5345.
- Seebach, D., Plattner, D. A., Beck, A. K., Wang, Y. M., Hunziker, D. & Petter, W. (1992). *Helv. Chim. Acta* **75**, 2171–2209.
- Shao, M.-Y. & Gau, H.-M. (1998). Organometallics 17, 4822-4827.
- Shao, M.-Y., Sheen, W.-S. & Gau, H.-M. (2001). Inorg. Chim. Acta 314, 105–110.

Sheen, W.-S. & Gau, H.-M. (2004). Inorg. Chim. Acta 357, 2279–2284.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Siemens (1996). *SMART* (Version 5) and *SAINT* (Version 4). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Weber, B. & Seebach, D. (1994). *Tetrahedron* **50**, 7473–7484.

Acta Cryst. (2007). E63, m2842-m2843 [doi:10.1107/S1600536807052725]

Dichlorido(N,N'-dibenzylideneethane-1,2-diamine- $\kappa^2 N,N'$)[(2,2-dimethyl-1,3-dioxolane-4,5-diyl)bis(diphenylmethanolato)- $\kappa^2 O,O'$]titanium(IV)

C.-A. Chen, L.-Y. Chiang and H.-M. Gau

Comment

Titanium(IV) complexes of 2,2-dimethyl- α , α , α' , α' -tetraaryl-1,3-dioxolane- 4,5-dimethanolates (TADDOLs) have been reported to be excellent catalysts in a variety of asymmetric reactions such as ethylation (Shao & Gau, 1998), arylation (Weber & Seebach, 1994), *Diels-Alder* (Narasaka *et al.*, 1989), and fluorination reactions (Hintermann & Togni, 2000). In these studies, molecular structures of both four-coordinate Ti(TADDOLate)₂ (Seebach *et al.*, 1992) and six-coordinate Ti(TADDOLate)Cl₂L₂ (Gothelf *et al.*, 1995) complexes were reported. For six-coordinate complexes, the two chloride ligands are invariably *trans* to each other and L₂ could be two neutral monodentate ligands, such as tetrahydrofuran (Shao *et al.*, 2001) or acetonitrile (Hintermann & Togni, 2000). L₂ could also be a neutral bidentate like bipyridine or a 1,10-phenathroline. Recently, the molecular structure of an aluminium(III)-TADDOLate complex has been reported (Chen *et al.*, 2007).

The molecular structure of (I) has a distorted octahedral geometry about the titanium(IV) metal center with Ti—O(TADDOLate) bond lengths of 1.7797 (16)and 1.7855 (14) Å which are nearly identical to those in Ti(TADDOLate)Cl₂(CH₃CN)₂ (II) (Hintermann & Togni, 2000) and Ti(TADDOLate)Cl₂(bipyridine) (III) (Sheen & Gau, 2004). However, these Ti—O bond lengths are slightly longer than those of 1.752 (5) and 1.765 (5)Å in Ti(TADDOLate)Cl₂(MeOCH₂CH₂OMe) (Hintermann & Togni, 2000). The weakest Ti—*N*(imine) bonds are *trans* to the strongest Ti—O bonds (Gau *et al.*, 1996) where the bond lengths are found to be 2.246 (2) and 2.2476 (17) Å. These are slightly shorter than the Ti—N distances to the monodentate CH₃CN ligands in (II), 2.264 (4) and 2.283 (4) Å but are somewhat longer than those of 2.229 (5) and 2.232 (5) Å in the bidentate bipyridine complex (III). The N—Ti—N bond angle in the five-membered chelate ring 73.90 (7)° is close to that of 72.0 (2)° in (III). However, this angle is ~10° smaller than the 83.24 (14)° observed in (II) with two monodentate nitrogen donors. In terms of Ti—Cl bond lengths and O—Ti—O angles, relatively small variations are observed in these structures. The Ti—Cl bonds bend away from the Ti—O bonds with a Cl—Ti—Cl angle of 163.96 (3)°.

Experimental

To a solution of Ti(TADDOLate)Cl₂(AcOEt)₂ (1.55 g, 2.00 mmol) (Shao & Gau, 1998) in 5 ml CH₂Cl₂ at 298 K, *N*,*N*-dibenzylideneethane-1,2-diamine (0.470 g, 2.00 mmol) in 5 ml CH₂Cl₂ was added. The solution was stirred for 12 h and the sovlent was removed. The resulted yellow solid was dissolved in 5 ml CH₂Cl₂ followed by a slow addition of 5 ml hexane. The two-layered solution was allowed to stand for 12 h at 298 K to give colorless crystals (0.917 g, 55.0%). ¹H NMR (300 MHz, CDCl₃): δ 9.00 (s, 2H, N=C*H*), 7.77–7.12 (m, 30H, *Ph*), 5.60 (s, 2H, OC*H*), 4.13 (m, 4H, NC*H*₂), 0.56 (s, 6H, *CH*₃) p.p.m.. ¹³C{¹H} NMR (75 MHz, CDCl₃): δ 166.77, 144.90, 143.70, 131.66, 131.52, 130.33, 129.78, 128.73, 128.18, 127.52, 127.45, 127.32, 127.03, 126.95, 111.35, 99.99, 80.26, 51.70, 27.38 p.p.m..

Refinement

All H atoms were treated as riding, with C—H = 0.93–0.98 Å, and with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C)$. Higher U_{eq} values are observed for C6, C7, C17, C18, C36, C37, C38, C39, C44 and C45 due to vibrations of peripheral methyl or phenyl groups away from the Ti metal center.

Figures

Fig. 1. The molecular structure of (I), with atom-numbering scheme. Displacement ellipsoids are drawn at the 20% probability level. All except tertiary H atoms have been omitted for clarity.

Dichlorido(N,N'-dibenzylideneethane-1,2-diamine- $\kappa^2 N,N'$)[(2,2- dimethyl-1,3-dioxolane-4,5-diyl)bis(diphenylmethanolato)- $\kappa^2 O,O'$]titanium(IV)

Crystal data

$[TiCl_2(C_{31}H_{28}O_4)(C_{16}H_{16}N_2)]$	$F_{000} = 1712$
$M_r = 819.64$	$D_{\rm x} = 1.256 {\rm ~Mg} {\rm ~m}^{-3}$
Orthorhombic, $P2_12_12_1$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 7794 reflections
a = 9.9044 (9) Å	$\theta = 2.3 - 26.0^{\circ}$
<i>b</i> = 18.8261 (17) Å	$\mu = 0.37 \text{ mm}^{-1}$
c = 23.238 (2) Å	T = 293 (2) K
V = 4332.9 (7) Å ³	Block, colorless
Z = 4	$0.70\times0.59\times0.21~mm$

Data collection

Bruker SMART 1000 CCD diffractometer	8479 independent reflections
Radiation source: fine-focus sealed tube	6464 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.042$
T = 293(2) K	$\theta_{\text{max}} = 26.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.1^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -10 \rightarrow 12$
$T_{\min} = 0.672, \ T_{\max} = 1.000$	$k = -23 \rightarrow 23$
24512 measured reflections	$l = -28 \rightarrow 23$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.036$	$w = 1/[\sigma^2(F_o^2) + (0.0439P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.085$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 0.95	$\Delta \rho_{max} = 0.25 \text{ e} \text{ Å}^{-3}$
8479 reflections	$\Delta \rho_{min} = -0.23 \text{ e } \text{\AA}^{-3}$
505 parameters	Extinction correction: none
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 3731 Friedel pairs
Secondary atom site location: difference Fourier map	Flack parameter: -0.03 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Ti	0.01130 (4)	0.890362 (18)	0.017317 (17)	0.03442 (10)
Cl1	-0.19289 (6)	0.87499 (4)	-0.03230 (3)	0.05223 (17)
Cl2	0.22879 (6)	0.87341 (3)	0.05768 (3)	0.05237 (17)
O1	0.04561 (15)	0.97815 (7)	-0.00782 (7)	0.0376 (4)
O2	-0.10731 (18)	1.13265 (8)	0.05941 (7)	0.0518 (4)
O3	-0.0431 (2)	1.08799 (9)	0.14664 (7)	0.0556 (5)
O4	-0.06491 (15)	0.91234 (8)	0.08435 (7)	0.0378 (4)
N1	0.09409 (19)	0.83911 (10)	-0.06252 (9)	0.0423 (5)
N2	-0.00005 (18)	0.77257 (9)	0.03233 (9)	0.0390 (4)
C1	0.0141 (2)	1.05209 (10)	-0.00378 (10)	0.0382 (5)
C2	-0.0782 (2)	1.05946 (11)	0.04940 (10)	0.0372 (5)
H2A	-0.1630	1.0343	0.0419	0.045*
C3	-0.0195 (2)	1.03286 (11)	0.10639 (10)	0.0380 (5)
H3A	0.0781	1.0262	0.1020	0.046*
C4	-0.0835 (2)	0.96249 (12)	0.12945 (10)	0.0371 (5)
C5	-0.0873 (4)	1.15128 (14)	0.11801 (12)	0.0625 (8)
C6	-0.2193 (5)	1.1747 (2)	0.14401 (18)	0.1215 (18)

H6A	-0.2845	1.1372	0.1403	0.182*
H6B	-0.2512	1.2162	0.1243	0.182*
H6C	-0.2062	1.1854	0.1840	0.182*
C7	0.0228 (5)	1.20642 (17)	0.12197 (15)	0.1091 (16)
H7A	0.1036	1.1884	0.1045	0.164*
H7B	0.0400	1.2172	0.1617	0.164*
H7C	-0.0053	1.2488	0.1023	0.164*
C8	-0.0567 (3)	1.07213 (12)	-0.06015 (11)	0.0445 (6)
C9	0.0162 (4)	1.06813 (15)	-0.11071 (11)	0.0632 (8)
H9A	0.1066	1.0549	-0.1095	0.076*
C10	-0.0427 (5)	1.0834 (2)	-0.16289 (14)	0.0867 (11)
H10A	0.0078	1.0800	-0.1965	0.104*
C11	-0.1747 (5)	1.1035 (2)	-0.16552 (15)	0.0887 (11)
H11A	-0.2146	1.1133	-0.2009	0.106*
C12	-0.2486 (4)	1.10906 (18)	-0.11572 (15)	0.0794 (10)
H12A	-0.3381	1.1239	-0.1173	0.095*
C13	-0.1903 (3)	1.09274 (14)	-0.06321 (12)	0.0586 (7)
H13A	-0.2415	1.0957	-0.0298	0.070*
C14	0.1464 (3)	1.09407 (12)	0.00229 (11)	0.0460 (6)
C15	0.1502 (3)	1.16627 (14)	-0.01034 (14)	0.0635 (8)
H15A	0.0730	1.1891	-0.0236	0.076*
C16	0.2688 (4)	1.20430 (17)	-0.00315 (17)	0.0898 (12)
H16A	0.2707	1.2525	-0.0118	0.108*
C17	0.3823 (4)	1.1718 (2)	0.0165 (2)	0.1116 (16)
H17A	0.4611	1.1979	0.0214	0.134*
C18	0.3811 (3)	1.10086 (19)	0.0291 (2)	0.1041 (15)
H18A	0.4592	1.0787	0.0422	0.125*
C19	0.2627 (3)	1.06186 (15)	0.02209 (16)	0.0702 (9)
H19A	0.2620	1.0137	0.0309	0.084*
C20	-0.2338 (2)	0.97070 (13)	0.14184 (11)	0.0437 (6)
C21	-0.3293 (3)	0.94547 (16)	0.10358 (14)	0.0606 (8)
H21A	-0.3018	0.9228	0.0700	0.073*
C22	-0.4658 (3)	0.9538 (2)	0.11499 (17)	0.0855 (11)
H22A	-0.5296	0.9361	0.0893	0.103*
C23	-0.5063 (4)	0.9878 (2)	0.16382 (19)	0.0984 (13)
H23A	-0.5979	0.9936	0.1711	0.118*
C24	-0.4135 (4)	1.0133 (2)	0.20214 (17)	0.0826 (11)
H24A	-0.4418	1.0371	0.2351	0.099*
C25	-0.2781 (3)	1.00354 (17)	0.19176 (13)	0.0613 (8)
H25A	-0.2152	1.0192	0.2186	0.074*
C26	-0.0096 (3)	0.93361 (12)	0.18191 (10)	0.0430 (6)
C27	0.1065 (3)	0.96223 (18)	0.20453 (13)	0.0652 (8)
H27A	0.1421	1.0035	0.1887	0.078*
C28	0.1710 (4)	0.9303 (2)	0.25059 (16)	0.0865 (11)
H28A	0.2483	0.9509	0.2659	0.104*
C29	0.1224 (4)	0.8686 (2)	0.27395 (16)	0.0933 (12)
H29A	0.1682	0.8462	0.3038	0.112*
C30	0.0059 (4)	0.84082 (18)	0.25278 (15)	0.0860 (10)
H30A	-0.0298	0.7998	0.2691	0.103*

C31	-0.0595 (3)	0.87281 (16)	0.20752 (13)	0.0633 (8)
H31A	-0.1393	0.8530	0.1938	0.076*
C32	0.1284 (3)	0.76385 (13)	-0.05528 (13)	0.0516 (7)
H32A	0.2164	0.7595	-0.0373	0.062*
H32B	0.1321	0.7408	-0.0926	0.062*
C33	0.0228 (2)	0.72842 (11)	-0.01819 (11)	0.0456 (6)
H33A	-0.0605	0.7230	-0.0397	0.055*
H33B	0.0536	0.6817	-0.0066	0.055*
C34	0.0898 (3)	0.86842 (14)	-0.11157 (12)	0.0544 (7)
H34A	0.0754	0.9172	-0.1109	0.065*
C35	0.1041 (3)	0.83741 (17)	-0.16978 (13)	0.0639 (8)
C36	0.0207 (5)	0.7833 (2)	-0.18752 (18)	0.1132 (15)
H36A	-0.0416	0.7635	-0.1623	0.136*
C37	0.0307 (7)	0.7587 (3)	-0.2438 (2)	0.149 (2)
H37A	-0.0269	0.7230	-0.2564	0.179*
C38	0.1227 (8)	0.7859 (3)	-0.2800 (2)	0.145 (2)
H38A	0.1303	0.7679	-0.3171	0.174*
C39	0.2044 (7)	0.8395 (3)	-0.2628 (2)	0.1272 (18)
H39A	0.2678	0.8586	-0.2879	0.153*
C40	0.1926 (5)	0.8654 (2)	-0.20779 (15)	0.0912 (12)
H40A	0.2469	0.9032	-0.1964	0.109*
C41	-0.0077 (3)	0.74781 (12)	0.08336 (12)	0.0497 (6)
H41A	-0.0180	0.7821	0.1118	0.060*
C42	-0.0030 (3)	0.67446 (13)	0.10504 (12)	0.0559 (7)
C43	0.0597 (5)	0.6663 (2)	0.15814 (16)	0.0970 (12)
H43A	0.0924	0.7060	0.1775	0.116*
C44	0.0734 (6)	0.6011 (3)	0.1818 (2)	0.1319 (19)
H44A	0.1147	0.5964	0.2176	0.158*
C45	0.0277 (6)	0.5429 (2)	0.1541 (2)	0.1213 (18)
H45A	0.0416	0.4981	0.1700	0.146*
C46	-0.0396 (4)	0.54923 (17)	0.10223 (18)	0.0899 (12)
H46A	-0.0740	0.5091	0.0841	0.108*
C47	-0.0557 (3)	0.61513 (14)	0.07746 (13)	0.0614 (7)
H47A	-0.1013	0.6199	0.0427	0.074*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Ti	0.0350 (2)	0.02628 (18)	0.0420 (2)	-0.00081 (16)	-0.00169 (19)	0.00011 (18)
Cl1	0.0408 (3)	0.0585 (4)	0.0573 (4)	-0.0036 (3)	-0.0117 (3)	-0.0018 (3)
Cl2	0.0378 (3)	0.0460 (3)	0.0734 (5)	0.0010 (3)	-0.0125 (3)	-0.0005 (3)
01	0.0435 (8)	0.0278 (7)	0.0415 (9)	-0.0019 (6)	0.0009 (7)	0.0017 (7)
O2	0.0807 (12)	0.0317 (9)	0.0430 (10)	0.0127 (8)	-0.0082 (9)	-0.0038 (8)
O3	0.0897 (14)	0.0405 (9)	0.0366 (9)	0.0029 (9)	-0.0097 (10)	-0.0058 (8)
O4	0.0397 (8)	0.0322 (8)	0.0414 (9)	0.0012 (6)	0.0002 (7)	0.0008 (7)
N1	0.0446 (11)	0.0327 (10)	0.0495 (13)	-0.0039 (8)	0.0038 (10)	-0.0033 (10)
N2	0.0373 (10)	0.0319 (9)	0.0477 (12)	-0.0014 (9)	-0.0028 (10)	0.0020 (8)
C1	0.0501 (13)	0.0247 (10)	0.0398 (13)	-0.0003 (10)	-0.0036 (12)	0.0011 (9)

C2	0.0463 (13)	0.0255 (11)	0.0396 (14)	0.0036 (10)	-0.0077 (11)	-0.0001 (10)
C3	0.0454 (14)	0.0331 (11)	0.0355 (13)	-0.0031 (10)	-0.0037 (12)	-0.0016 (9)
C4	0.0404 (13)	0.0362 (12)	0.0348 (13)	0.0003 (10)	-0.0023 (11)	0.0027 (10)
C5	0.110 (2)	0.0364 (15)	0.0408 (16)	0.0089 (15)	0.0019 (16)	-0.0042 (13)
C6	0.183 (4)	0.102 (3)	0.080 (3)	0.080 (3)	0.048 (3)	0.017 (2)
C7	0.205 (5)	0.0591 (19)	0.063 (2)	-0.045 (3)	-0.028 (3)	-0.0087 (16)
C8	0.0658 (17)	0.0300 (12)	0.0376 (14)	0.0014 (11)	-0.0076 (13)	0.0013 (11)
C9	0.084 (2)	0.0637 (17)	0.0421 (16)	0.0067 (17)	-0.0015 (17)	-0.0005 (13)
C10	0.122 (3)	0.097 (3)	0.0403 (18)	0.005 (2)	-0.003 (2)	0.0060 (17)
C11	0.131 (3)	0.085 (3)	0.050 (2)	0.001 (2)	-0.035 (2)	0.0054 (19)
C12	0.090 (2)	0.080 (2)	0.068 (2)	0.0131 (19)	-0.033 (2)	0.008 (2)
C13	0.0700 (19)	0.0585 (17)	0.0475 (17)	0.0083 (14)	-0.0117 (15)	0.0039 (14)
C14	0.0562 (15)	0.0346 (13)	0.0471 (15)	-0.0092 (11)	-0.0033 (12)	0.0060 (11)
C15	0.085 (2)	0.0376 (14)	0.068 (2)	-0.0114 (13)	-0.0020 (17)	0.0054 (14)
C16	0.115 (3)	0.0517 (19)	0.103 (3)	-0.040 (2)	0.006 (3)	0.0117 (19)
C17	0.096 (3)	0.088 (3)	0.151 (4)	-0.059 (2)	-0.024 (3)	0.021 (3)
C18	0.068 (2)	0.082 (2)	0.162 (4)	-0.0383 (18)	-0.029 (2)	0.038 (3)
C19	0.0597 (17)	0.0520 (16)	0.099 (3)	-0.0181 (14)	-0.0094 (19)	0.0205 (18)
C20	0.0413 (13)	0.0447 (14)	0.0451 (16)	0.0037 (11)	0.0010 (12)	0.0046 (12)
C21	0.0425 (15)	0.074 (2)	0.065 (2)	-0.0023 (14)	-0.0021 (15)	-0.0006 (16)
C22	0.0391 (18)	0.122 (3)	0.095 (3)	-0.0071 (17)	0.0012 (18)	-0.002(2)
C23	0.0468 (19)	0.141 (4)	0.108 (3)	0.020 (2)	0.023 (2)	0.022 (3)
C24	0.070 (2)	0.102 (3)	0.075 (2)	0.020 (2)	0.028 (2)	0.002 (2)
C25	0.0572 (18)	0.077 (2)	0.0495 (17)	0.0089 (15)	0.0052 (15)	-0.0011 (16)
C26	0.0468 (14)	0.0466 (13)	0.0357 (13)	0.0078 (12)	0.0028 (13)	0.0047 (11)
C27	0.0593 (18)	0.079 (2)	0.0575 (19)	-0.0028(16)	-0.0138 (16)	0.0208 (17)
C28	0.069 (2)	0.116 (3)	0.074 (2)	0.006 (2)	-0.0251 (19)	0.027 (2)
C29	0.107 (3)	0.108 (3)	0.065 (2)	0.031 (3)	-0.016(2)	0.031 (2)
C30	0.108 (3)	0.080 (2)	0.070 (2)	0.008 (2)	0.002 (2)	0.0425 (19)
C31	0.0731 (19)	0.0586 (18)	0.0583(18)	-0.0017(15)	0.0010 (15)	0.0180 (15)
C32	0.0552 (15)	0.0364 (13)	0.0631 (18)	0.0042 (11)	0.0051 (14)	-0.0063(13)
C33	0.0485 (14)	0.0309 (11)	0.0573 (16)	-0.0029(10)	0.0022 (14)	-0.0023(11)
C34	0.0719 (18)	0.0418 (14)	0.0494 (16)	0.0023 (13)	-0.0019(14)	-0.0019(13)
C35	0.087 (2)	0.0554 (17)	0.0497 (18)	0.0106 (16)	-0.0036(17)	-0.0048(15)
C36	0.134 (4)	0.121 (3)	0.085 (3)	-0.029(3)	-0.002(3)	-0.040(3)
C37	0.206 (6)	0.146 (5)	0.095 (4)	-0.036(5)	-0.007(4)	-0.054(4)
C38	0.238 (7)	0.130 (5)	0.067 (3)	0.032 (5)	-0.002(4)	-0.037(3)
C39	0.210 (6)	0.107 (3)	0.065 (3)	0.014 (4)	0.040 (3)	-0.005(3)
C40	0.139(3)	0.077(2)	0.057(2)	0.001(2)	0.022(2)	0.0007(19)
C41	0.0539(16)	0.077(2)	0.057(2)	0.001(2)	-0.0058(15)	-0.0007(19)
C42	0.0623 (16)	0.0273(12)	0.0591 (17)	0.0020(12)	0.0016(16)	0.0147(13)
C43	0 143 (3)	0.071(2)	0.077(3)	0.012 (2)	-0.027(3)	0.018(2)
C44	0.199(5)	0.071(2) 0.103(4)	0.094(3)	0.012(2)	-0.035(3)	0.010(2)
C45	0.185(5)	0.071(3)	0.091(3)	0.049(3)	0.017(4)	0.037(3)
C46	0.103(3)	0.0464(18)	0.100(1)	0.0019(19)	0.036(3)	0.0079(19)
C47	0.0687(17)	0.0444(15)	0.0712 (19)	0.0019(19)	0.0115(15)	0.0077(15)
~	0.000/(1/)	0.0117(10)	0.0/14(1)	0.000 (17)	0.0110(10)	0.0007 (10)

Geometric parameters (Å, °)

Ti—O4	1.7797 (16)	C19—H19A	0.9300
Ti—O1	1.7855 (14)	C20—C21	1.382 (4)
Ti—N1	2.246 (2)	C20—C25	1.386 (4)
Ti—N2	2.2476 (17)	C21—C22	1.387 (4)
Ti—Cl1	2.3459 (7)	C21—H21A	0.9300
Ti—Cl2	2.3710 (7)	C22—C23	1.363 (5)
O1—C1	1.430 (2)	C22—H22A	0.9300
O2—C5	1.420 (3)	C23—C24	1.367 (5)
O2—C2	1.427 (3)	С23—Н23А	0.9300
O3—C3	1.417 (3)	C24—C25	1.375 (5)
O3—C5	1.433 (3)	C24—H24A	0.9300
O4—C4	1.422 (3)	C25—H25A	0.9300
N1—C34	1.267 (3)	C26—C27	1.374 (4)
N1—C32	1.467 (3)	C26—C31	1.382 (4)
N2—C41	1.276 (3)	C27—C28	1.384 (4)
N2—C33	1.456 (3)	C27—H27A	0.9300
C1—C8	1.533 (3)	C28—C29	1.368 (5)
C1—C14	1.537 (3)	C28—H28A	0.9300
C1—C2	1.543 (3)	C29—C30	1.359 (5)
C2—C3	1.531 (3)	С29—Н29А	0.9300
C2—H2A	0.9800	C30—C31	1.374 (4)
C3—C4	1.563 (3)	С30—Н30А	0.9300
С3—НЗА	0.9800	C31—H31A	0.9300
C4—C26	1.522 (3)	C32—C33	1.510 (3)
C4—C20	1.525 (3)	C32—H32A	0.9700
C5—C6	1.505 (5)	С32—Н32В	0.9700
C5—C7	1.508 (5)	С33—Н33А	0.9700
С6—Н6А	0.9600	С33—Н33В	0.9700
С6—Н6В	0.9600	C34—C35	1.480 (4)
С6—Н6С	0.9600	C34—H34A	0.9300
C7—H7A	0.9600	C35—C40	1.351 (5)
С7—Н7В	0.9600	C35—C36	1.374 (5)
С7—Н7С	0.9600	C36—C37	1.390 (6)
C8—C13	1.381 (4)	С36—Н36А	0.9300
C8—C9	1.381 (4)	C37—C38	1.341 (7)
C9—C10	1.376 (4)	С37—Н37А	0.9300
С9—Н9А	0.9300	C38—C39	1.354 (8)
C10-C11	1.362 (5)	C38—H38A	0.9300
C10—H10A	0.9300	C39—C40	1.372 (6)
C11—C12	1.373 (5)	С39—Н39А	0.9300
C11—H11A	0.9300	C40—H40A	0.9300
C12—C13	1.384 (4)	C41—C42	1.471 (3)
C12—H12A	0.9300	C41—H41A	0.9300
C13—H13A	0.9300	C42—C47	1.390 (4)
C14—C19	1.381 (4)	C42—C43	1.390 (4)
C14—C15	1.391 (4)	C43—C44	1.352 (5)

C15—C16	1.386 (4)	C43—H43A	0.9300
C15—H15A	0.9300	C44—C45	1.351 (6)
C16—C17	1.359 (5)	C44—H44A	0.9300
C16—H16A	0.9300	C45—C46	1.382 (6)
C17—C18	1.367 (5)	C45—H45A	0.9300
C17—H17A	0.9300	C46—C47	1.377 (4)
C18—C19	1.393 (4)	C46—H46A	0.9300
C18—H18A	0.9300	C47—H47A	0.9300
O4—Ti—O1	98.73 (7)	C17—C18—C19	119.8 (3)
O4—Ti—N1	167.86 (7)	C17—C18—H18A	120.1
O1—Ti—N1	93.32 (7)	C19—C18—H18A	120.1
O4—Ti—N2	94.15 (7)	C14—C19—C18	120.7 (3)
O1—Ti—N2	166.79 (7)	С14—С19—Н19А	119.7
N1—Ti—N2	73.90 (7)	С18—С19—Н19А	119.7
O4—Ti—Cl1	95.35 (6)	C21—C20—C25	118.4 (2)
O1—Ti—Cl1	96.75 (5)	C21—C20—C4	120.8 (2)
N1—Ti—Cl1	81.71 (5)	C25—C20—C4	120.8 (2)
N2—Ti—Cl1	84.92 (5)	C20—C21—C22	120.4 (3)
O4—Ti—Cl2	94.04 (6)	C20—C21—H21A	119.8
O1—Ti—Cl2	94.65 (5)	C22—C21—H21A	119.8
N1—Ti—Cl2	86.40 (6)	C23—C22—C21	119.9 (4)
N2—Ti—Cl2	81.44 (5)	C23—C22—H22A	120.0
Cl1—Ti—Cl2	163.96 (3)	C21—C22—H22A	120.0
C1—O1—Ti	146.95 (14)	C22—C23—C24	120.6 (3)
C5—O2—C2	111.52 (18)	С22—С23—Н23А	119.7
C3—O3—C5	110.67 (17)	C24—C23—H23A	119.7
C4—O4—Ti	148.64 (14)	C23—C24—C25	119.6 (3)
C34—N1—C32	122.1 (2)	C23—C24—H24A	120.2
C34—N1—Ti	122.94 (17)	C25—C24—H24A	120.2
C32—N1—Ti	113.87 (17)	C24—C25—C20	121.0 (3)
C41—N2—C33	123.35 (19)	С24—С25—Н25А	119.5
C41—N2—Ti	120.50 (16)	C20—C25—H25A	119.5
C33—N2—Ti	115.48 (14)	C27—C26—C31	117.4 (2)
O1—C1—C8	106.47 (17)	C27—C26—C4	124.6 (2)
O1—C1—C14	108.70 (18)	C31—C26—C4	117.9 (2)
C8—C1—C14	109.99 (19)	C26—C27—C28	120.7 (3)
O1—C1—C2	105.63 (16)	С26—С27—Н27А	119.6
C8—C1—C2	113.03 (19)	С28—С27—Н27А	119.6
C14—C1—C2	112.66 (19)	C29—C28—C27	120.9 (4)
O2—C2—C3	104.57 (18)	C29—C28—H28A	119.6
O2—C2—C1	109.70 (18)	C27—C28—H28A	119.6
C3—C2—C1	116.00 (19)	C30—C29—C28	118.8 (3)
O2—C2—H2A	108.8	С30—С29—Н29А	120.6
C3—C2—H2A	108.8	С28—С29—Н29А	120.6
C1—C2—H2A	108.8	C29—C30—C31	120.6 (3)
O3—C3—C2	105.59 (17)	С29—С30—Н30А	119.7
O3—C3—C4	109.11 (18)	С31—С30—Н30А	119.7
C2—C3—C4	114.82 (18)	C30—C31—C26	121.6 (3)
O3—C3—H3A	109.1	С30—С31—Н31А	119.2

С2—С3—НЗА	109.1	C26—C31—H31A	119.2
С4—С3—НЗА	109.1	N1—C32—C33	109.4 (2)
O4—C4—C26	106.91 (18)	N1—C32—H32A	109.8
O4—C4—C20	109.42 (19)	С33—С32—Н32А	109.8
C26—C4—C20	110.8 (2)	N1—C32—H32B	109.8
O4—C4—C3	104.92 (17)	С33—С32—Н32В	109.8
C26—C4—C3	112.47 (19)	H32A—C32—H32B	108.2
C20—C4—C3	112.02 (19)	N2-C33-C32	108.40 (18)
O2—C5—O3	106.40 (19)	N2—C33—H33A	110.0
O2—C5—C6	109.6 (3)	С32—С33—Н33А	110.0
O3—C5—C6	108.8 (3)	N2—C33—H33B	110.0
O2—C5—C7	109.2 (3)	С32—С33—Н33В	110.0
O3—C5—C7	108.9 (3)	H33A—C33—H33B	108.4
C6—C5—C7	113.7 (3)	N1—C34—C35	130.3 (3)
С5—С6—Н6А	109.5	N1—C34—H34A	114.8
С5—С6—Н6В	109.5	C35—C34—H34A	114.8
H6A—C6—H6B	109.5	C40—C35—C36	118.9 (3)
С5—С6—Н6С	109.5	C40—C35—C34	120.4 (3)
Н6А—С6—Н6С	109.5	C36—C35—C34	120.6 (3)
H6B—C6—H6C	109.5	C35—C36—C37	119.1 (5)
С5—С7—Н7А	109.5	С35—С36—Н36А	120.5
С5—С7—Н7В	109.5	С37—С36—Н36А	120.5
H7A—C7—H7B	109.5	C38—C37—C36	120.7 (5)
С5—С7—Н7С	109.5	С38—С37—Н37А	119.6
H7A—C7—H7C	109.5	С36—С37—Н37А	119.6
H7B—C7—H7C	109.5	C37—C38—C39	120.4 (5)
C13—C8—C9	118.2 (3)	C37—C38—H38A	119.8
C13—C8—C1	123.5 (2)	С39—С38—Н38А	119.8
C9—C8—C1	118.3 (2)	C38—C39—C40	119.2 (5)
C10—C9—C8	121.1 (3)	С38—С39—Н39А	120.4
С10—С9—Н9А	119.4	С40—С39—Н39А	120.4
С8—С9—Н9А	119.4	C35—C40—C39	121.7 (4)
C11—C10—C9	120.3 (4)	С35—С40—Н40А	119.1
C11—C10—H10A	119.9	С39—С40—Н40А	119.1
C9—C10—H10A	119.9	N2—C41—C42	131.2 (2)
C10—C11—C12	119.7 (3)	N2—C41—H41A	114.4
C10-C11-H11A	120.2	C42—C41—H41A	114.4
C12—C11—H11A	120.2	C47—C42—C43	119.3 (3)
C11—C12—C13	120.3 (3)	C47—C42—C41	125.8 (3)
C11—C12—H12A	119.9	C43—C42—C41	114.9 (3)
C13—C12—H12A	119.9	C44—C43—C42	120.4 (4)
C8—C13—C12	120.5 (3)	C44—C43—H43A	119.8
C8—C13—H13A	119.8	C42—C43—H43A	119.8
C12—C13—H13A	119.8	C45—C44—C43	120.6 (4)
C19—C14—C15	118.5 (2)	C45—C44—H44A	119.7
C19—C14—C1	121.1 (2)	C43—C44—H44A	119.7
C15—C14—C1	120.4 (2)	C44—C45—C46	120.5 (3)
C16—C15—C14	120.2 (3)	C44—C45—H45A	119.8
C16—C15—H15A	119.9	C46—C45—H45A	119.8

C14—C15—H15A	119.9	C47—C46—C45	119.9 (4)
C17—C16—C15	120.6 (3)	C47—C46—H46A	120.1
C17—C16—H16A	119.7	C45—C46—H46A	120.1
C15—C16—H16A	119.7	C46—C47—C42	119.2 (3)
C16—C17—C18	120.4 (3)	С46—С47—Н47А	120.4
С16—С17—Н17А	119.8	С42—С47—Н47А	120.4
С18—С17—Н17А	119.8		

Fig. 1